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ABSTRACT

Based on right-censored data from a lifetime distribution FO, a kernel
00

type estimator of the quantile function Q (p) infft: Fo(t) > p), 0 < p 5 1,

is proposed. The estimator is defined by Q n(p) -. hn fO Qn(t)K((t-p)/hn)dt, -

which is smoother than the usual product-limit quantile function

fl(p) - infft: F (t) a p), where Fn  denotes the product-limit estimator of

F0 from the censored sample. Under the random censorship model and general

conditions on hn ,K, and Fo, it is shown that Qn(p) is strongly consistent.

In addition, an approximation to Q is shown to be asymptotically equiv-

alent to % with probability one. A small Monte-Carlo simulation

study shows that for several values of the bandwidth h, Q performs better

than Qn in the sense of estimated mean squared errors. The estimator is

illustrated by an application to data from a mechanical-switch life test.

Key Words: Random censorship; Product-limit quantile function; Kernel

estimation; Median survival time estimation; Nonparametric quantile estimation.
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1. INTRODUCTION

Arbitrarily right-censored data arise naturally in industrial life

testing and medical follow-up studies. In these situations it is important

to be able to obtain nonparametric estimates of various characteristics of

the survival function S. Based on such right-censored data, Kaplan and Meier

q4Sgave the nonparametric maximum likelihood estimator of S, called the

product-limit estimator, and, among others, Reid (1981) has proposed methods S

of estimating the median survival time from the product-limit estimator.

Recently, Nair (1984) studied the problem of confidence bands for the survival

function obtained from the product-limit estimator. Also, Padgett and McNichols

it8 and McNichols and Padgett (1984) have discussed estimation of a density

for the survival distribution based on right-censored data.

One characteristic of the survival distribution that is of interest i.s the

ntile function, which is useful in reliability and medical studies. For any

probability distribution function G, the quantile function is defined by

Q(p) S G(p) B i inffx: G(x) a p), 0 S p 5 1. In particular, E0.5 is a

median of G. For a random (uncensored~sample ¥l'""Yn from G, the sample

quantile function G- (p) - inffx: G (x) Z p), 0 5 p 5 1, has been used ton n

estimate 4 p where G (X) denotes the sample distribution function. Note that

n n( p ) =  the [np]th order statistic among Y,...,Y where H) ....

denotes the greatest integer function. Cs~rgr' (1983) gives many of the lknown

results concerning Gn (p). Also, Falk (1984) has recently studied the relativc

deficiency of the sample quantile with respect to kernel type estimators.

Gther nonparametric estimators of the quantile function from uncensored

data have been proposed which are smoother than the sample quantile function.

&j... ... -- *~o.*.
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For example, Kaigh and Lachenbruch (1982) considered a "generalized sam!nne

quantile" obtained by averaging an appropriate subsample quantile over all

subsamples of a given size. Also recently, Yang (1984) has studied the

properties of kernel-type estimators of w vhich smooth the sample quantile ""'. -

p

function. Parzen (1979) had mentioned kernel estimators as a possible class •

of quantile estimators, but did not investigate their properties.

For arbitrarily right-censored data, Sander (1975) proposed estimation of

Fp by the quantile function of the product-limit estimator of I-S, and she

and Cheng (1981) obtained some asymptotic properties of that estimator. Csorgo

(1983) presented strong approximation results for this estimator.

The quantile function of the product-limit estimator is a step function

with jumps corresponding to the uncensored observations. The purpose of 1his

paper is to present a smoothed nonparametric estimator of the quantile fiAiou.-

from arbitrarily right-censored data based on the kernel method. It wi.l be.

shown that under general conditions this estimator, mentioned briefly by Par -''

(1979, p. 19) is strongly consistent, and based on the results of a swal"-

Monte Carlo simulation study, performs better than the quantile lot-

function of the product-limit estimator in the sense of smaller mean squared

error. In particular, better estimates of the median survival time are obtainable.

In addition, an approximation to the kernel estimator will be shown to be al:(o ,.

surely asymptotically equivalent to it under certain conditions. Finally, -

estimates of the quantile function from the randomly right-censored data g ive,

by Nair (1984) are presented as an illustration.

.b .. a - .]



p 4

2. ARBITRARILY RIGHT-CENSORED DATA

Let Xl,...,X denote the true survival times of n items or individuals

which are censored on the right by a sequence U1 ,U 2 ,... Un' which in general

may be either constants or random variables. It is assumed that the XOs
i

are nonnegative independent identically distributed random variables with common

unknown distribution function F and unknown quantile function

0 0 0Q (p) E o B inf{t: F0 (t) 2 pl, 0 5 p 5 1. Also, Q (p) is sometimes denoted

by FO (p).

The observed right-censored data are denoted by the pairs (Xi,Ai),

ml1,...,n, where

1iif i 
Xi min{X A iU

00 if Xi > U

Thus, it is known which observations are times of failure or death and which

ones are censored or loss times. The nature of the censoring depends on the

6%

U i's. (i) If U1 ,...,U n  are fixed constants, the observations are time-

truncated. If all U 's are equal to the same constant, then the case of
i

0
Type I censoring results. (ii) If all Ui W X(r), the rth order statistic

of , , then the situation is that of Type II censoring. (iii) If

Ul,...,Un constitute a random sample from a distribution H (usually unknown)

and are independent of , then (XiA i=l,2,...,n, is called a

randomly right-censored sample.

The random censorship model (iii) is assumed for the results presented

here. For this model, A,...,A are independent Bernoulli random variables,

and the distribution function F of each Xi, i1l,...,n, is given by

F - 1 - (1-FO)(1-H). --

". .

Fi:!i
.. ... . .... .. ....... .... .. .. . .. .. ..... .. ... ... .... .... .... .... .? . ..i. .. .... ... ....0. .
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Based on the censored sample (XiAi), i1l,2,...,n, a popular estimator

of the survival function l-F0(t) at t a 0 is the product-limit estimator,
40

proposed by Kaplan and Meier (1958) as the "nonparametric maximum likelihood

estimator". Efron (1967) showed that this estimator, defined next, is "self-

consistent". Let (ZiAi), i-l,...,n, denote the ordered X.'s along with

their corresponding A 's. A value of the censored sample will be denoted byi

the corresponding lower case letters (xj,6i) and (zi,6i) for the unordered

and ordered sample, respectively. Then the product-limit estimator of

l-Fo(t) is defined by

1, 0 OS t 5 s
^k-1 61

n-i i z <t !9z k=2..,
P (t) = Zk-1 k'=,...,nn {il1n-l)

z < t.0, Zn

AA

Denote the product-limit estimator of F((t) by F =(t) 1 - P (t), and let
F0( b Fn n

A

s denote the jump of P (or Fn) at Z., that is
j n nj

A

1 ")- P (Z , j=2,...,n-

Pn(Zn), j=n.

Note that s -0 if and only if 6 = 0, j < n, that is, if Z. is a censored

observation. Also, denote Si Fn(Zi) = I Si, i=l,2,...,n.
J=1

The product-limit estimator has played a central role in the analysis of

censored survival data (Miller, 1981). Its properties have been studied by

many authors, for example, Breslow and Crowley (1974), F~ldes and Rejt. (1981),

• -..
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FBIdes. RejtZ and Winter (1980), and Gill (1983).

Based on randomly right-censored data, it is natural to estimate the

0
quantile function Q (p) by the product-limit (PL) quantile function

(p) - infft: n(t) k p}. Cheng (1981) obtained asymptotic normality

results for Fp and gave an asymptotic expression for Ep in terms of p

Fn, and foi a density function of FO . Cs r (1983) presented strong approxi-

aion theorems for the PL quantile process Q n"

3. THE QUANTILE ESTIMATOR

In this section the kernel estimator of Q0 (p), 0 - p - 1, from the

randomly right-censored observations (Xi,Ai), ifl,...,n, will be defined.

Similar to Yang's (1984) estimators for the uncensored case, an approximation

which is often easier to compute will be given. First, some assumptionc and

notation concerning the kernel, the bandwidth sequence, and the lifecime' and

censoring distributions will be listed.

Let {h I be a "bandwidth" sequence of positive numbers such that
n

(h.l) h -*0 as n-*w.
n

Let K be a real-valued function defined on (_ox) such that

(K.1) K(x) 2 0, all real numbers x,

(K.2) K(x)dx - 1,

(K.3) K has finite support, that is, K(x) = 0 for 1xl > c

for some c > 0,

(K.4) sup JK(x)J <c, that is, K is bounded,
x

--..

. . . . . . . . . . . . . . . . . . ..-* -... ,."..•.°....

* * *.* * * * * * * * *.* . . . * .* .,'* .. .
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(K. 5) K is symmetric about zero. and

(K.6) K satisfies a Lipschitz condition, that is, there exists

a constant r such that for all x,y,

K(x) -K(y)j srjx A y.

Notice that conditions (K.1) -(K.2) simply say that K must be a Vrnhb-0)Aity

!3nsity function. Also, assume that the lifetime distribution F a- th -

censoring distribution H are such that

(F.1) F is continuous with density functionfo

(F.2) f 0  is continuous at Eo Q (p)~ and f 0(E
0  > 0,

p

(F. 3) F has a finite mean, and

(F.4) H(T ) < 1, where T_. supft: F0(t) < 1).
F0 0

It should be noted that the conditions (F.1) -(F.4) are not prohuij.. i~.

and are similar to those assumed by Cheng (1981). Condition (F.4) is usuallN

required for asymptotic results with random right-censorship and guarant~ees

that observations can be obtained from the entire support of the distribution

F 0'The conditions (h.1), (K.3 - K.6), and (F.2) - (F.4) are reqtij,

the asymptotic results of Section 4.

Now, for 0 !5 p 1, define the kernel type quantile function ef~

-h
1  Z f K((t-p)/h )dt, (3.1)

. .. ... .. . - ....



where S Fn (Z i). It should be noted that only those Z which ar_ jren-

sored appear in the sum (3.1) since

Si0, if Z is censored

fSi K((t -p)/hn)dt =•• ((i--/)
hn[K ((Si - p ) /h n - K*((Si_ l - p )/h n ]

if Zi  is uncensored,

*i

where K denotes the cumulative distribution function of K.

An approximation to the estimator (3.1) can be obtained by notic ii'L that

the derivative of K at (Si p)/hn is approximated by

(hn/Si) [K ((S-P)/h) - K ((Si 1lP)/hn
] z K((S -p)/hn)-

Hence, when S. - S is small, (3.1) is approximately equal to

Q (p ) h K((Si -p)/h). (3.2)

Again, since s, ± 0 when 6i 0, i < n, only the uncensored observations explicitly

appear in the sum (3.2).

In the case of no censoring, (3.1) and (3.2) reduce to the kernel estimators

of Yang (1984). He has shown that his estimators are asymptotically equ v.l(ent

in mean square and obtained rates of convergence for the variance and bi.,

Due to the censoring, similar results for the variance, bias, and mc ii: ,t-

consistency of (3.1) and (3.2) seem to be difficult, if not impossib]ci, < i.
-.. "

under general conditions on F0 and H. Some asymptotic results, however, hav'

been obtained under reasonable conditions and are presented in the next section.

",' °° . .°, ' °° .. °% '. '° -o ° .. -. o ° . . o °. . " . . . . . . . . . . , .° ....
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4. ASYMPTOTIC RESULTS

Here two asymptotic results for Qn and On  will be obtained.

First, the almost sure consistency of the kernel estimator Q (p) is

stated. The proofs of Theorems 1 and 2 are given in the Appendix,

40

Theorem 1. Suppose the conditions (h.1), (K.1) - (K.6), and (F.I"

(F.4) hold. If (log log n/n)3 /4 h- -+ 0 as n -, then for eachn

0 < p < 1, Q_(p) - QO(p) as n -* o with probability one. 0

The two estimators and can be shown to be asymptotically

almost surely (uniformly in p) equivalent under general conditions.

First, define U(t) t P(x)dx, t > 0.

Theorem 2. Suppose F0 and H are continuous and that (h.l), (01,,),
(K.2), (K.6), (F.3), and (F.4) hold. If lim sup V(Z ) < - with S

nn

probability one, then

Pj Q(p) - n(p)i = O(h2 (log log n/n)) )I I.

Thus, if hn (log log n/n) - 0 as n , then under the above

conditions and are (uniformly in p) asymptotically equivalent

wvith probability one.

It should be remarked that lin sup _(Zn ) < - almost surely

under the conditions given by Susarla and Van Ryzin (1980), for exmill<.

* * * *. . . . *-*. .
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Also, if h n D n -b for 0 < b < and some positive constant
n

D, the condition that hn2(log log n/n) - 0 holds. It seems to i

be quite difficult to obtain the exact mean squared error of Q

or and to be able to choose {hn} to minimize this mean squared

error or to choose an optimal {h in some other sense. Some
n

simulation results presented in the next section indicate a range

of possible hn values for which the mean squared errors of

(and Q ) are less than those of the PL quantile estimator.

5. SOME SIMULATION RESULTS AND AN EXAMPLE

A small Monte Carlo study was performed in order to provide some

small-sample comparisons of and with the PL quantile estimator,

and with each other, in the sense of mean squared errors. The study

also provides some insight into the choice of reasonable values for

h which might be used in practice. The random censorship model
n

with F0 (t) 1 - exp(-t) and Hi(t) = 1 - exp(-Xt) was used with X

chosen to give 50% censoring or 30% censoring as in Reid (1981). The

ratios of the mean squared error of %(p) to the mean squared errors

of the smoothed estimators %(p) and Q(p) were computed for variouf:

0 < p < 1 and sample sizes n - 50 and 100. For each case, 1000 censored

samples were generated using the uniform random number generator GGUBS

in the International Mathematical and Statistical Libraries (1982) on

a DEC VAX 11-750 computer. The standard errors of the simulated mean

squared errors ranged from 10 to 10
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Table 1 shows some of the results for the triangular kernel

K(x) - 1 - lxj, jxj < 1, which satisfies the conditions (K.1) - (Y.6)

of Section 3. The simulations were run for values of h - 0.01 (0.02)
n

0.61. For the estimator %(p), for each value of p listed there is

an h which gives smaller estimated mean squared error than the D)J.
n

quantile estimator. In particular, this is true for several h
n

values for the median estimators Qn(0.5) and Q n(0.5). The app oy:1

mation Q(p) performs well for several h values when p < 0.5,
n

but not so for larger p. As would be expected for more severe

censoring, the performance of either estimator at large values of p

is not as good as for values near 0.5. Notice that h values of
n

0.09 to 0.13 appear to be best for Qn(p) over all p in Table i(K

with n 1 100, whereas for K*(p) the hn should be somewhat larx,,n-

(0.15 to 0.21) for a good estimator over all p. Generally, the be~s

hn for *(p) is larger than that for Qn(p), indicating that 0"'

requires slightly more smoothing than On"

The results of Table 2 are for the uniform kernel K(x) - 1,

lx < I. This kernel does not satisfy condition (K.6), but the sim-

ulation results are quite similar except perhaps for the best choice.

of values of h .
". n

It was mentioned in Section 4 that it is difficult if not impo,,n f .-.

to calculate in general the exact mean squared error of n or

- for small n due to the right-censorship. Also,

the mean square convergence (with a rate)

p ..............................................................
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has not yet been obtained. Hence, to find an optimal h in the sci: - ,f
n

minimum mean squared error of or Q seems to be quite difficult. These

simulations, however, indicate reasonable ranges of h values which give
n

small mean squared errors under the assumed models and censoring percen':ages.

As an example of the quantile estimators, the life test data for i = 40

mechanical switches reported by Nair (1984) are used. Two failure modes, A and B,

were recorded and Nair (1984) estimated the survival function of mode A,

assuming the random right-censorship model. Table 3 shows the 40 observations

" with the corresponding 6i values (8 1 indicates failure mode A and 6 -o
- -.

denotes a censored value). There are seventeen uncensored observation,, slightly

. more than 50% censoring. From Table l(a) with n =50, the values of h chosen
n

' for this example were 0.03 for Qn(p) and 0.15 for Qn W. (Also, respct:iJve

values of 0.05 and 0.19 were tried yielding similar estimates.) Figurc 1

shows the estimates Qn(p) and Q(p), calculated using the triangular kernei,

along with the PL quantile function Q (p). Due to the large number of censored
n

observations, the estimates for large p reflect the small estimated mean

squared error ratios in Tables 1 and 2 for p a 0.90. In particular, the

- estimate n is not very smooth for moderate to large p and could be smoothed

more by taking larger h , say h - 0.35. However, as indicated by -ralle 3,

the performance deteriorates for larger p with such hn, and the estimale Q
A

falls much below Qand for this data. The estimates of median lifetime

are Qn(0.50) = 2.5478, Q (0.5) = 2.4354, and n(0.5) = 2.5480.

Qn o- *. 5)
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TABLE 1. Ration of tlSEs with Triangular Kernel

(a) 50% Censoring

n z 100

.03 .05 .07 .09 .11 .13 .15 .19 .21 .25 .31 .35 .41

.10 a. 1.16 1.18 1.31 1.34 1.43 1.40 1.51 1.40 1.27 1.17 0.84 0.65 0.38
b. 1.29 1.37 1.52 1.55 1.66 1.68 1.85 1.75 1.66 1.58 1.15 0.88 0.50

.25 a. 1.04 1.07 1.09 1.12 1.16 1.21 1.16 1.23 1.22 1.17 1.15 1.08 0.93
b. 1.17 1.20 1.22 1.27 1.31 1.35 1.35 1.40 1.44 1.43 1.50 1.47 1.40

.50 a. 1.04 1.07 1.10 1.12 1.14 1.17 1.14 1.16 1.15 1.10 1.03 0.89 0.73
b. 1.14 1.24 1.34 1.34 1.39 1.47 1.46 1.50 1.61 1.72 1.74 1.85 1.83

.75 a. 1.07 1.19 1.23 1.41 1.41 1.31 1.20 1.43 1.34 1.31 1.60 1.85 2.64
b. 0.33 0.63 1.16 1.53 1.51 1.69 1.27 1.47 1.31 1.30 2.40 2.66 2.65

.90 a. 1.11 1.13 1.23 1.30 1.40 1.51 1.45 1.14 0.94 0.92 0.50 0.51 0.37
b. 0.10 0.16 0.21 0.22 0.37 0.64 0.79 0.76 0.70 0.76 0.45 0.48 0.36

.95 a. 1.02 1.02 0.88 0.69 0.57 0.49 0.41 0.34 0.29 0.28 0.22 0.22 0.19-
b. 0.09 0.10 0.37 0.55 0.57 0.54 0.49 0.40 0.33 0.31 0.24 0.24 0.20

n - 50

.10 a. 1.08 1.12 1.22 1.26 1.29 1.38 1.41 1.47 1.34 1.24 0.91 0.87 0.59
b. 1.48 1.52 1.58 1.75 1.79 1.92 2.06 2.17 2.04 1.97 1.54 1.43 0.98

.25 a. 1.04 1.09 1.11 1.13 1.16 1.16 1.19 1.20 1.22 1.21 1.21 1.17 0.97
b. 1.27 1.32 1.32 1.48 1.45 1.53 1.57 1.57 1.71 1.71 1.90 1.88 1.80

.50 a. 1.09 1.07 1.07 1.10 1.15 1.17 1.26 1.21 1.10 1.21 1.04. 0.96 0,97
b. 0.34 1.08 1.34 1.57 1.73 1.92 2.09 1.89 2.00 2.40 2.14 2.11 2.25

.75 a. 1.13 1.10 1.19 1.19 1.33 1.29 1.41 1.56 1.42 1.62 1.92 2.35 2.65
b. 0.17 0.36 0.61 0.76 1.07 0.93 0.95 1.29 0.98 1.22 2.16 2./4 2,20

*.90 a. 1.06 1.11 1.13 1.15 1.16 1.16 1.08 0.90 0.77 0.69 0.51 0.48 0.34
b. 0.11 0.13 0.17 0.16 0.25 0.45 0.60 0.70 0.63 0.63 0.50 0.48 0.34

.95 a. 1.00 0.99 0.88 0.75 0.63 0.55 0.51 0.41 0.39 0.36 0.33 0.33. 0.29
b. 0.12 0.13 0.47 0.66 0.67 0.68 0.68 0.55 0.53 0.46 0.38 0.36 0.32

a*(MSE Fn )/(SE Qn), b (MSE Fn )/MSE Q*)
In
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TABLE 1. Ration of HSEs with Triangular Kernel

(b) 30% Censoring

n .100

Sh~ .03 .05 .07 .09 .11 .13 .15 .19 .21 .25 .31 .35 .41

*.10 a. 1.10 1.15 1.24 1.26 1.32 1.34 1.41 1.37 1.19 1.11 0.80 U.62 0.35
b. 1.22 1.30 1.39 1.44 1.50 1.55 1.66 1.64 1.49 1.42 1.02 10.78 0.43

.25 a. 1.04 1.08 1.09 1.13 1.14 1.17 1.17 1.20 1.21 1.22 1.22 1.09 0.94
b. 1.09 1.16 1.17 1.22 1.22 1.25 1.28 1.29 1.35 1.38 1.43 1.31 1.19

.50 a. 1.04 1.05 1.07 1.09 1.10 1.11 1.12 1.16 1.09 1.11 1.06 0.94 0.74
b. 1.10 1.11 1.15 1.19 1.20 1.21 1.22 1.26 1.24 1.29 1.29 1.22 1.05

.75 a. 1.02 1.15 1.10 1.10 1.08 1.11 1.12 1.05 1.00 0.79 0.82 0.98 1.41
b. 1.02 1.38 1.27 1.33 1.35 1.40 1.43 1.53 1.57 1.50 1.39 1.46 1.68

*.90 a. 1.11 1.23 1.34 1.21 1.23 1.67 1.71 1.73 1.21 1.05 0.55 0.52 0.36
b. 0.69 0.97 1.25 1.15 1.34 2.07 1.72 1.61 1.10 0.98 0.53 0.50 0.35

.95 a. 1.23 1.27 1.61 1.66 1.18 0.94 0.69 0.51 0.40 0.34 0.27 0.26 0.21-
b. 0.32 0.38 1.18 1.50 1.08 0.94 0.70 0.53 0.42 0.36 0.28 0. 27 0.22

n .50

.10 a. 0.95 1.00 1.06 1.12 1.15 1.21 1.20 1.34 1.17 1.17 0.83 0.77 0.55
b. 1.17 1.26 1.29 1.44 1.46 1.54 1.59 1.80 1.61 1.66 1.23 1.10 0.77

.25 a. 1.07 1.07 1.08 1.12 1.14 1.10 1.17 1.17 1.21 1.18 1.23 1.23 1.12
b. 1.21 1.21 1.18 1.28 1.29 1.27 1.35 1.37 1.45 1.42 1.59 1.60 1.55

*.50 a. 1.05 1.04 1.08 1.09 1.11 1.08 1.12 1.18 1.08 1.13 1.10 1.06 0.93
b. 1.13 1.12 1.21 1.24 1.28 1.25 1.33 1.40 1.42 1.42 1.48 1.55 1.46

.75 a. 1.08 1.07 1.12 1.14 1.13 1.15 1.12 1.04 1.25 0.92 1.11 1.34 ).79
b. 0.62 1.16 1.24 1.42 1.50 1.54 1.74 1.65 2.11 1.64 2.01 3.8) 2.15

.90 a. 1.10 1.24 1.39 1.23 1.42 1.69 1.83 1.84 1.59 1.22 0.94 0.67 0.51
b. 0.22 0.53 0.76 0.65 1.08 1.53 1.78 1.68 1.44 1.17 0.92 0.66 0.50

.95 a. 1.13 1.24 1.21 1.14 0.96 0.83 0.65 0.49 0.42 0.39 0.36 0.28 0.24
b. 0.19 0.21 0.71 1.04 0.98 0.91 0.72 0.56 0.47 0.42 0.39 0.30 0.2.5

* -(ElBE F ')/MSE Q~) b a(ElSE F 1)IMSE Q*)
n n n



15

TABLE 2. Ratios of I4SE9 with Uniform Kernel

(a) 50% Censoring (n-100)

j.03 .05 .07 .09 .10 .13 .15 .20 .25 .30 .35 .40

.10 a. 1.12 1.13 1.25 1.26 1.29 1.30 1.40 1.52 1.53 1.50 1.19 0.99
b. 0.83 1.10 1.35 1.41 1.42 1.50 1.64 1.81 1.88 1.90 1.5'/ )..35

.25 a. 1.02 1.05 1.06 1.08 1.10 1.15 1.13 1.17 1.24 1.24 1.29 1.15
b. 0.66 0.83 1.03 1.08 1.12 1.17 1.23 1.30 1.43 1.42 1.47 1.40

.50 a. 1.03 1.06 1.09 1.10 1.06 1.13 1.13 1.12 1.17 1.16 1.18 1.03
b. 0.26 0.54 0.83 0.95 0.96 1.07 1.17 1.31 1.32 1.40 1.60 1.50

.75 a. 1.06 1.14 1.19 1.35 1.13 1.25 1.14 1.32 1.52 1.48 1.31 1.16
b. 0.13 0.27 0.54 0.74 0.73 1.02 0.84 1.15 1.39 1.28 1.21 0.88

.90 a. 1.08 1.08 1.17 1.21 1.26 1.35 1.47 1.46 1.22 0.93 0.71 0.50
b. 0.06 0.10 0.17 0.20 0.22 0.23 0.23 0.20 1.32 1.12 0.83 0, 6

.95 a. 1.02 1.01 1.02 1.01 1.01 0.68 0.53 0.36 0.29 0.26 0.24 0,22
b. 0.08 0.10 0.09 0.10 0.10 0.53 0.73 0.53 0.38 0.31 0.27 (.24

(b) 30% Censoring (nu100)

.10 a. 1.08 1.07 1.18 1.19 1.22 1.24 1.34 1.46 1.46 1.40 1.14 0.92
b. 1.14 1.28 1.39 1.41 1.17 1.40 1.56 1.73 1.73 1.72 1.43 1.18

.25 a. 1.03 1.07 1.07 1.09 1.09 1.12 1.15 1.17 1.26 1.22 1.26 1.19
b. 0.61 0.90 1.03 1.07 1.09 1.16 1.19 1.26 1.35 1.34 1.41 1.35

.50 a. 1.04 1.04 1.05 1.07 1.08 1.08 1.10 1.13 1.14 1.13 1.13 1.08
b. 0.47 0.74 0.90 0.94 1.03 1.09 1.09 1.17 1.21 1.26 1.32 1.22

.75 a. 1.01 1.02 1.08 1.08 1.04 1.11 1.18 1.10 1.03 0.91 0.80 0.71
b. 0.24 0.56 0.76 0.93 0.87 1.11 1.26 1.20 1.29 1.27 1.21 3-.28

.90 a. 1.07 1.23 1.28 1.19 1.21 1.35 1.24 1.34 1.77 1.07 0.78 0.43
b. 0.23 0.44 0.69 0.80 0.77 0.99 0.94 0.75 1.82 1.21 0.85 0.46

.95 a. 1.16 1.27 1.35 1.53 1.51 1.55 0.96 0.59 0.46 0.32 0.28 0.24
b. 0.18 0.31 0.37 0.38 0.29 1.63 1.19 0.72 0.51 0.35 0.30 0.25

a *(MBE F 1(NSE Q.), b *(MSE F- )/(MSE Q*)

n n
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TABLE 3. Failure Times (in Millions of Operations) of Switches

z . zi  61 zi  zi

1.151 0 1.667 1 .2.119 0 2.547 1
1.170 0 1.695 1 2.135 1 2.548 1
1.248 0 1.710 1 2.197 1 2.738 0
1.331 0 1.955 0 2.199 0 2.794 1
1.381 0 1.965 1 2.227 1 2.883 0
1.499 1 2.012 0 2.250 0 2.883 0
1.508 0 2.051 0 2.254 1 2.910 1
1.543 0 2.076 0 2.261 0 3.015 1
1.577 0 2.109 1 2.349 0 3.017 1
1.584 0 2.116 0 2.369 1 3.793 0

6. CONCLUSION

The kernel type quantile estimator given in this paper (and the appwoxi-

mate estimator) are smoother than the PL quantile function which has bec,;

used for estimation from right-censored data in the past. Based on the r,11

Monte Carlo simulation study, however, the approximate estimator Q(p) does

not seem to perform overall as well as %(p) for p > 0.5, even though ihc

two estimators are asymptotically equivalent almost surely under the stat"

conditions. Thus, %(p) seems to be the better small-sample estimator.

The integrals involved in computing %n(p) are easily calculated for the

simple kernels used in Section 5.

Still under study is the problem of mean square convergence of the 5;li

mators %(p) and Qn(p) along with possible rates. Also, the choice of ai,

optimal bandwidth sequence [h ) in the sense of minimum mean squared (or,
n

or minimum bias is still being investigated. However, a practical choice of S

h can be obtained based on results of simulations such as those given in
n

Tables 1 and 2. For a particular set of right-censored data, h ncan ea!,i]

be changed computationally to give as "smooth" an estimate as desired.

_-A

2: .1 ~:.& 12 : :~.. .... ~. C .2. . . L 2- L. . o-oo
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APPENDIX

The proofs of Theorems 1 and 2 are presented here.

Proof of Theorem 1. First, write

h 0 h o(t)K((t-p)/h )dt - QO(p)

f -Q t Q 0 (t)]h l K((t-p)/h )dt
0 n n

-1 
o1+f[hn J Q (t)K((t-p)/h )dt -Q (p)]

I+3*

Now, following the first part of the proof of Yang's (1984) Theorem ;_), 

the sample quantile function replaced by %, under the assumption!, giver,,

expression I can be integrated by parts to obtain

A

F (x) --

" o {f n h K((t-p)/hn)dt}dx

+ I0 [F(x) - F0 (x)]h'1 K((F 0 (x) - p)/hn)dx

fF 0 (x) h- K((t-p)/h )dt - IF (x)

0(x)hn K((F (x) - p)/h ))dx

f [FW F (x)jh- K((.(x)

~Il~I2*

Using condition (F.4) and the law of the iterated logarithm (LIL) result for

Fn  given by F~ldes and Rejt5 (1981), the same argument used to obtain Yan,' ,

.

. o.

'

'. b . j. * . . .. *-.**. ***

- -...'. ,.*,.- ... -. -.. - - . - . ... . . .. . . . . . . . ,: .-. ~. ,.
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(1984) inequality (4) can be used to show that

3/2Iloll a (.log log n)3
Jil S 0(m l n n3/2h 2 2) almost surely. (A.1) .

n

Also, with probability one,

1121lIsFn - Foil fl hnI K((y-p)/hn)/f 0 (Q(y))dy,

where JIF - F01i B suplF(x) - F0(x)l, and thus, by conditions (h.1),
X A

(K.3), and (F.2) and again using the LIL for F (with condition (F.4))

it can be shown that asymptotically

1121 ) ( with probability one. (A.2)

Finally, using conditions (h.l), (K.1) - (K.5), (F.1), (F.3), and (F.4)

and Theorem 1A of Parzen (1962), it fcllows that

-I-

1i31 If0 QO(t)h K((t-p)/h )dt _ Qo(p)' - o(1). (A.3)

3/4 -1
Therefore, combining (A.1), (A.2), and (A.3), since (log logn/n) h -0"n

as n - cc implies that (log logn)/(nh ) 0 and (log logn/n) 2 h- 0

n n

as n - , Theorem 1 is proved. //

Proof of Theorem 2. For 0 S p S 1,

h1 ~ z [sr K((t-p)/h ) .3
Qn (P) Qn(p) hn Zi[siK(Si-p)/hn) K((t-p)/hn

*

When sI > 0, that is, Z is uncensored, let S be an interior point oi

the interval (Sil,Si) with probability one so that

K((S -P)/hn) " K((t-p)/h )dt a.s.

n.

..-
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Then using condition (K.6),

n -°

,o(p) - o(p)I h- z zsi IK((S,-p)/h) K(CS* -p)Ih 0)

,° -si

2 n 2i ii

sr-2  n 
2

s rh Zi S i  a.s. (A.4)
i-2

Now, by the continuity of F0  (F.), using the definition of s i and Si  a

(A.4) can be written as

+ 0(p) - F(p)I rhn2  ZiIF(Z±) - Fn(Zix)dFn(Zi)

-2A
s h x0 x - F (x)dF (xx)

n n n 0 n

r h: 2 J0 xjjFn(x) - Fo(X)ji -

s2rh-2n n - FO11 fxdFnCx) a.s., (A.5) I

where g(x) denotes the limit from the left at x of the function g and

11 F- Foil - sup IF((x) - F0(x)I. 0

Now, since P (x) a 0 for x > Z, xd F(X) r(Z. and by the
A 

-,

assumptions of the theorem and the LIL for F of F61des and Rejt5 (1981),
n

from (A.5) 
S

ICP) - QnCP)I " 0((loglogn/n)h h 2) a.s. (A.6)

n)n

Noting that the right-hand-side of (A.5) does not involve p, the conclusion

of the theorem follows. //

S. . . .. .
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